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The consistent quantum interpretations of logic that were introduced in a 
previous paper are applied to four experiments: (1) ordinary interferences, (2) 
the Badurek-Rauch-Tuppinger neutron interferometry experiment, {3) the 
Einstein-Podolsky-Rosen experiment, and (4) the detection far away of the 
origin of a nonrelativistic particle initially near the origin. In the first two cases, 
the proposition calculus excludes the possibility of observing interferences and 
of asserting together through which path the particles went. It is used to provide 
a somewhat complete discussion of the Badurek-Rauch-Tuppinger experiment, 
The possibility of using logical implication allows a rather complete discussion 
of the EPR experiment, including the question of causality, although the lack of 
a relativistic version of the theory does not allow a complete discussion of 
causality. The last experiment leads to the following result: Detecting the 
position of a particle at time t sometimes allows one to determine with a finite 
uncertainty what its momentum was just before the position measurement, even 
when it is infinitely precise. 

KEY WORDS: Quantum mechanics; interferences; Einstein-Pdolsky-Rosen. 

1. I N T R O D U C T I O N  

In a previous paper ~1) hereafter I, it has been shown how to construct 
representations (interpretations) of logic within the framework of quantum 
mechanics. It will be assumed in the following that the basic ideas proposed 
in that paper can be used with no further comment and the corresponding 
notions will be freely used. 
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The present article deals with four applications: 

1. A discussion of a typical interference experiment. It is shown how 
the predicate "A particle went through a given hole" can never enter a 
consistent representation of logic along with the predicates associated with 
the observation of interferences. The first predicate is therefore meaningless 
according to the definition given in I. 

2. A recent and more refined neutron interference experiment 
performed by Badurek e t  al. ~2) where spin-flippers having different 
resonance frequencies act on two polarized neutrons beams is also con- 
sidered. It is shown that, here again, one cannot logically tell through 
which beam the neutron went. This is related to the fact that the resonant 
magnetic fields are produced by coils where a classical current flows so that 
their quantum states are coherent in the sense of quantum electrodynamics. 

3. The Einstein-Podolsky-Rosen experiment. (3) The intuitive reason- 
ing that is frequently made to interpret it is given a rigorous logical basis. 

4. The knowledge about the momentum before measurement that 
can be derived from a position measurement. 

Some of these questions were first considered by Griffiths (t2) in his 
original formulation of the theory and there is general agreement between 
the present results and his, except of course for what is peculiar to the use 
of implication. 

2. I N T E R F E R E N C E S  

My first example will deal with interference experiments. For 
definiteness, I shall consider the case of Young's experiment: A par t ic le  
with given momentum hits a screen pierced by two holes H1 and H'~. 
Behind the screen, a battery of detectors registers the particle. 

In conventional measurement theory, it is known that, when detectors 
are located within the holes, wave packet reduction implies that no inter- 
ference can be observed. However, when no such actual detector is present, 
the question has always been felt to be a delicate one. Ordinary intuition 
keeps telling us that the particle h a d  to  go through only one hole. The 
question to be examined is therefore whether this naive classical statement 
can be given a meaning within the framework of s o m e  consistent quantum 
representation of logic. 

It has been shown in I that such a representation relies on a given 
initial state IO)=exp(ikz)  and a set of propositions. The predicates of 
interest are 

Et(t~): "the particle went through hole H 1 at time tl" 
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E'l(tl): "the particle went through hole H'I at time tl" 

E~(t2): "the particle hit a detector in position n at time t2," with 
n = 1, 2, 3,.... 

If it can be asserted that the particle went through a given hole, then 
there should exist a consistent representation of logic containing all these 
predicates, at least for some choice of times (tl; t2). 

One might associate predicate E1 with a three-dimensional region 
surrounding the first hole. However, this would lead to unnecessary 
mathematical developments that have nothing to do with the basic 
question. Accordingly, I shall slightly modify the experimental setup by 
introducing a horizontal plate along the x - z  plane (see Fig. 1), which will 
not essentially modify the problem. Then E~ will mean that the particle is 
on the left of the screen in the region - a < z < a ,  above the plate ( y > 0 ) .  
E]  will mean that it is in the region - a < z < a ,  y < 0 ,  both predicates 
being taken at the same time t~. The z coordinate of the screen in the 
chosen system of reference will be called L and I take L > a. 

To make the predicates E~ explicit, I assume that a plane parallel to 
the screen has been covered by a battery of identical receptors so that E~ 
means that the particle is detected at time t2 on detector number n located 
in a region of space having a volume V and centered at point x, .  The point 
Xo will be taken on the z axis. 

The initial wave function r on the left of the screen is taken as 
Kexp(ikz) ,  where K is a normalizing factor: K =  (2 -1/2, where ~ is a large 
quantization volume. The corresponding density operator is p = [ tp)(~l .  

---'I' i i" " 

-a ~5 

HI r,l 

H'I 

Fig. l. The geometry of an interference experiment as discussed in the text. 
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I retain only the smallest representation of logic allowing these 
predicates because I want to prove them to the inconsistent. If the smallest 
representation containing them is inconsistent, the same will obviously be 
true for any large one. 

The compatibility conditions take the form 

C = Re Tr[El( t l )  pE'~(t~) E~(t2)] = 0 (2.1) 

As usual in the elementary treatment of such problems, I use the BKW 
approximation, amounting here to a replacement of the Schr6dinger 
equation by the Huygens-Fresnel principle. 

The projector E~ can be written explicitly as 

E1 = +a'dz dy dx Ix, y, z ) ( x ,  y, z[ (2.2) 
a - - o o  

One can pass to the Heisenberg representation, using the free-particle 
Green's function: 

(xl e x p ( - i H t )  lY) = (-2zti t)  3/2 exp[-i(x- y)2/2t] (2.3) 

where I use for simplicity units where h and the particle mass are equal to 
unity. 

Take the point of observation x n not too far from the z axis, call r 1 
and r'l its distance, respectively, to the centers of the holes HI and H'~ and r 
its distance to the central point Xo. Also call T the probability amplitude 
for a particle to pass through any hole. Finally, choose the time difference 
t 2 -  t~ to be the classical time necessary to go from the plane of abscissa 
zero to x0, i.e., 

t2 - -  tl = (L + r)/v, v = k/m = k 

With these assumptions, the trace in Eq. (2.1) takes the simple form 

( x ,  t21 El(t1)I~)(~t lE ' l ( t l ) lXnt2)  V (2.4) 

The first factor in expression (2.4) can be written as 

+ o  

dx dy dz ( X n t 2 1 x t l ) ( X t l l ~ t )  (2.5) 
o o  - -  a 

or, with our simplifying assumptions and putting At = t 2 - - t l ,  ~ = k2/2, 

f +~ f2 -1 dz (T/r1) ( - 2 ~ i  At) -1/2 exp[i(L + rl - z)2/2At] exp(ikz - i~tl) 
- - a  

(2.6) 
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Here appears for the first time a method that will be met several times 
in the sequel: The integral over z in Eq. (2.6) can be evaluated by the 
saddle-point method because all the quantities are essentially classical and 
the exponents contain a factor h -1 when ordinary units are reestablished. 
This means that the exponentials are very rapidly oscillating quantities, so 
that the asymptotic method of saddle-point (or stationary phase) 
integration can work. The integral (2.6) has the form 

i+a ( -2~ziAt)  exp(i~) 1/2 dz 
- - c 1  

with 

= (L + r 1 - z)2/2At + kz  

has a saddle-point occurring at the solution of O~/~z = 0, or L + r l -  z = 
v3t ,  i.e., Zo = rl - r, where the exponent is ~b o = k (L  + rl). Since this saddle 
point lies well within the integration domain E - a ,  + a ] ,  by performing a 
similar calculation for the second factor in (2.4) and assimilating rl and r] 
to r in the overall factors like r~ ~ in (2.6), one gets for the right-hand side 
of the compatibility condition (2.1) the result 

C = Re { V/ (~r  2 )] TJ 2 exp [ i(q~ -- ~b') ] } 

= i T/r2l 2(V/ff~) cos (~  --  ~ ' )  (2.7) 

with ~b = krl ,  ( / =  kr'l. 
On the other hand, an easy trace calculation gives for the probability 

of the predicate E~ the familiar quantity 

wn = I T/r] 2(V/f2) lexp(i~b) + exp(i~b')J 2 

= jT/r2r 2(V/s 2[1 + cos(~ - ~b')] (2.8) 

Clearly C is not zero, so that the statement "The particle went through 
hole Hi"  together with the observation at x n cannot be given a meaning in 
any consistent quantum representation of logic. There is an exceptional 
case where C vanishes when the phase difference is equal to 7r/2 modulo z. 
However, since one must consider all the compatibility conditions for all 
the detectors, this is of no consequence. 

Finally, it can be said that the statement "The particle went through 
one hole" is a meaningless naive statement. It only came from an intuition 
that was built ultimately upon our classical representation of logic that 
does not apply here. 

This simple example shows how a proposition calculus can replace 
elusive arguments based upon wave packet reduction by unambiguous 
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results from straightforward calculations. The answer proposed here to this 
question is not the usual one: "No measuring apparatus can tell because it 
would change the experimental setup." It is not, "One can never tell, but 
maybe, who knows if there were hidden variables?" It is: "If its obeying a 
logic is included in the laws of Nature and if this is the type of logic it 
obeys, then the question is intrinsically meaningless." 

3. A N E U T R O N  I N T E R F E R O M E T R Y  E X P E R I M E N T  

An interesting alternative to Young's experiment was proposed by 
Vigier (4) and was performed in a beautiful experiment by Badurek et al. (2) 
I describe it briefly. 

A neutron beam is polarized along its velocity. It is separaied by 
diffraction on a crystal into two well-separated beams 1 and 2 (seeFig. 2). 
Each beam passes through a spin-flipper, i.e., a magnetic resonance device 
composed of a coil generating an oscillating magnetic field, everything 
being in a stationary homogeneous magnetic field. The time of traversal of 
the spin-flipper by the neutron is such that the polarization should com- 
pletely flip. Furthermore, an analyzer located behind the spin-flipper lets 
only spin-flipped neutrons pass. Finally, the two beams are recombined 
again by diffraction to let them interfere. The experimental setup is such 
that neutrons cross the device one by one. 

One of the most interesting features of the experiment is that the alter- 
nating magnetic fields produced by the two coils have sharply separated 
resonance frequencies co I and o) 2. Is this to say, as Vigier originally 
suggested, that we can tell through which beam the neutron went by 
detecting the energy of the photon that was either emited or absorbed dur- 
ing the spin flip? Surely, during a spin flip occurring in an external 
stationary magnetic field B, the energy of the neutron must change by a 
quantity �89 that can be either hvl or hv2 (g being the gyromagnetic 

a 

Fig. 2. Sketch of the Badurek Rauch-Tuppinger experimental setup. 
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ratio). This energy must come from a photon and if we can tell its 
frequency, we can tell what beam the neutron foll6wed. 

I first consider the problem in conventional quantum mechanics. Since 
photons are involved, some reliance on quantum electrodynamics is 
necessary. 

The classical magnetic field produced by the first coil has a vector 
potential that will be written as Re[~Al(X)exp(-ieo~t)] in the gauge 
div A = 0. I shall consider its intensity e as a variable parameter, A~ being 
normalized by 

f (A1) dx 1 

In order to describe the associated photons, one may proceed as follows. 
Define a complete basis of orthonormal transverse vectorial functions, the 
first term in the basis being A1. This is easily realized using Schmidt's 
orthogonalization procedure starting from an overcomplete family made 
from A1 and a complete orthogonal basis. Then the quantized field can be 
expanded along this basis. In the present case, only photons corresponding 
to the first basis vector will enter into play, so that the relevant quantum 
field can be simply written in terms of creation/annihilation operators as 

A(x, t)= (x/2COl)-l/Z[ a~ Al(x) exp(-io91t ) + al A*(x) exp(icol t)] 

+ (x/2O)z)-m[atzAz(x) exp(-ioo2t ) + a2A*'(x) exp(i~o2 t)] (3.1) 

where I have also introduced the field produced by the second coil. 
The quantized field generated by the coil will be a coherent state since 

the ac currents producing them are essentially classical. Denoting by i0) 
the vacuum photon state, the state of the electromagnetic field will 
therefore be simply (5) 

] 4 )  exp(a~0~ 1 t i [2 �89 = +azC~2-glcta - 10) (3.2) 

where ea and ct 2 are c-numbers depending only upon the current intensities 
in the coils. 

Assuming for simplicity that there is absorption of a photon in the 
spin-flipper (the case of emission would only lengthen the equations 
without any new physics), the state of the complete quantum state 
neutron + photons going out of the spin-flipper can easily be written: Let 
4;a (x) be the wave function of the spin-flipped neutron in beam 1 (its 
kinetic energy having increased by hv~). With a similar notation for beam 
2, the complete state vector reads 

]~(X)) = [al~l_(x)+a2t~2 (x)] 14) (3.3) 
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The probability density for observing the neutron somewhere behind 
the spin-flippers will be given by < 7"(x)l ~(x) ) .  However, coherent states 
satisfy the relation 

al,21~> = ~,21~> (3.4) 

Therefore one has 

< I//(X) I ~ (X)>  : I ~f/i- (X)(ZI ~- ~/2(X)0~212 (3.5) 

Accordingly, it is found that the interferences are observed when the 
electromagnetic field is in a coherent state, this result being essentially 
independent of the current intensity in the coils. The uncertainty relation 
between the phase and the. number of photons has therefore nothing to do 
with it. 

Can we tell which beam the neutron followed? In conventional quan- 
tum mechanics, this would mean detecting the fact that the electronic- 
equipment delivered at some instant an excess energy corresponding to the 
energy of one photon, either in one coil or in the other. This is certainly 
impossible in practice, but is it inconceivable? The discussion could go on 
for a long time through the exchange of subtle "naive" arguments. 

The solution I propose is simply to go back to the discussion given in 
Section 2. The only practical change will be to use state vectors of type 
(2.3) in a larger Hilbert space allowing for photons. Putting 

Iq~l> = a j  Iq>> =~a Iq~>, 1q52) =azlq~) =~z l tb )  

the first term in Eq. (2.4) will remain essentially the same, except that one 
has to take into account the exchange of energy in the spin-flipper, as 
explained by Badurek et  al., and to introduce a multiplicative factor 
coming from the action of the annihilation operators in Fock space given 
by 

(~1al,21~> = ~1,2 

Everything boils down, up to irrelevant normalization factors, to the 
replacement of C (the right-hand-side of the compatibility condition) and 
P. (the probability of observation), respectively, by 

C'  = ~1 0~2 COS(~ -- ~r) 
(3.6) 

P .  = 1~1 exp(i~b) + ~2 exp(i~')l 2 

The conclusions that were previously obtained remain unchanged: to 
tell which way the neutron went is still a logically meaningless statement. 
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For the discussion to be reasonably complete, two remarks should be 
added. 

1. In a different experimental setup where the neutron beams would 
cross two masers located in a constant magnetic field, so that spin flip 
could occur by photon absorption and only one spin state be selected by 
sing a polarization filter, the analysis is similar but the results are 
somewhat different. One assumes that the state of the electromagnetic field 
in each maser (with frequencies co 1 and co2) have a well-defined number of 
photons of each type N1 and N2. Then, reconsidering the analysis given in 
Section 2, one can replace the predicate E1 by "There a r e  N 1 - 1 photons of 
the first type and N2 of the second type in the electromagnetic field at a 
time t~ after crossing of the masers by the neutron." The predicate E'I 
would be similar, exchanging the roles of N~ and N2. Then the orthogon- 
ality of photon states having different occupation numbers implies 
immediately that these predicates are compatible with the predicates E~ 
corresponding to observation. However, the probability for observing the 
neutron irrespective of any predicate becomes 

(NIN2r (~b* a• + O*-at)(Olal + ~2a2)IN1N2) 

= N1101-12 + N2 [@2-12 (3.7) 

up to an overall factor. 
One can then tell which way the neutron went, but there are no inter- 

ferences. 

2. Since logic plays such a role in the present considerations, it may 
be worth mentioning that the apparently simple statement "a photon with 
frequency Vl was absorbed" that was important in Vigier's formulation (4) 
has in general no meaning because no projector can be associated to it. 
This is a theorem that is not too difficult to prove using the Bargman 
representation of Fock space, (6~ but for which the proof will be omitted 
here. Of course, the predicate "There are N photons" has an associated 
projector. 

4. T H E  E I N S T E I N - P O D O L S K Y - R O S E N  E X P E R I M E N T  

The Eistein-Podolsky-Rosen experiment has had a great influence on 
reaserch dealing with the foundations of quantum mechanics. It was first 
proposed as a gedanken experiment (3) before being realized in the 
laboratory. (8) 

One version is the following. An unstable particle A is confined near 
the origin. It can decay into two particles P and P' and there is no loss of 
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generality in considering the case where P and P' have the same mass m. 
Particle P is observed at time t by a detector located far away from the 
origin, around a point x. 

When the decaying particle decays into two spin-one-half particles in a 
total spin state zero and when the first particle P is observed to have a spin 
component + 1/2 along a z axis, can we prove rigorously that the other 
particle has a z spin component - 1 / 2 ?  What happens when one wants to 
measure the spin of the second particle along a different axis? This question 
was considered by Bell in the framework of hidden-variables theory (9) and 
has since attracted much attention. 

This problem has been considered by Griffiths, (12) so that I shall only 
state what differs in the present analysis from the one he gave, i.e., the use 
of implications. The calculations are essentially the same as his, except that 
I augment them by the results in measurement theory that were given in 
paper I. 

I only consider spin in the present section. I shall introduce the 
following predicates: 

F1 = "A measuring apparatus gives a reading corresponding to the 
value + 1/2 for the spin component of P along a direction nl at time t~" 

E~ = " T h e  spin of P along n~ is + 1/2 at time t~" 

E'I = "The spin of the other particle P' along n~ is - 1/2 at time tl" 

F2 = "A second measuring apparatus gives a reading coresponding 
to the value - 1/2 for the spin of the other particle P' along a 
direction n2 at time t2" 

E2 = "The spin of P' along n 2 is -t- 1/2 at time t2" 

I take t2 >/t~ for definiteness. 
The results are the following: 

(i) If nl is not parallel to n2 and t 2 is later than t~, 

F1 ~ El ~ E l ,  F2 ~ E2 

(ii) If nl is parallel to n2 and t2 is later than tl, 

F1 ~ E1 ~ E'I ~ E2 ~ F2 

(iii) If n~ is not parallel to n2 and t2 is equal to t~, then E '  1 cannot 
enter a consistent representation of logic together with the other predicates. 
One has only 

F1 ~ El,  F2 ~ E2 



Logical Reformulation of Quantum Mechanics. II 943 

(iv) If nl is parallel to r/2 and t 2 is equal to tl, then E'~ = E2 and, 
using the equivalence between two-sided implication and identity of two 
propositions, 

FI=~ E,=~ E2 ~ F2, F2=~ E2 ~ EI=*.F1 

so that FI---F2. 
The experiments are of course consistent with these statements. 
In the language used at the end of the first paper, all these predicates 

can be said to be reliable. 
It should be stressed that I am using here in fact nonrelativistic quan- 

tum mechanics, i.e., universal time. It would be very important  to use, for 
instance, Dirac's equation to find out what these results become in a 
relativistic version. This will not be done here. However, I discuss in next 
section a few points concerning the spatial aspects of the experiment. 

5. T H E  EPR E X P E R I M E N T :  S P A T I A L  A S P E C T S  

l[ now discuss some aspects of the particles location in space at 
different times. This will proceed as follows. ! first discuss the wave function 
of a system of two particles produced by the decay of a heavier one, and 
then discuss how the observation of one particle can be used to derive 
predicates concerning the other one. All the theory is nonrelativistic. 

5.1. The  W a v e  Funct ion 

I first discuss the wave function of two particles produced by a decay. 
At time zero, the unstable particle A is confined near the origin. It can be, 
for instance, an unstable nucleus in a crystal. It will be convenient to 
choose for its initial wave function a Gaussian state 

q~(X) = (2~a 2) - 3/4 exp( - X2/4a 2) (5.1) 

I denote its lifetime by ~ and the corresponding width by F =  1/z. The 
rationalized Planck constant h will be taken equal to one. 

A can decay into P and P'. Since even slight complications due to 
kinematics are of no concern here, I assume for simplicity that P and P '  
have the same mass m. Here again, the notation will be simplified by 
choosing m as the mass unit. 

I call q the mean value of the momenta  of P and P '  in their center- 
of-mass system. In the present units, the corresponding nonrelativistic 
velocity is v = q/m = q. I treat P and P '  as distinguishable, the case of 
undistinguishable particles offering no special difficulty. 
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The positions of P and P' will be denoted, respectively, by x and x'. 
The position of their center of mass and their relative separation will be 
denoted, respectively, by 

X = ( x + x ' ) / 2 ,  r  (5.2) 

The wave function in the center-of mass system can be taken from 
Goldberger and Watson (m as being 

~b(~; t) = (2~) - l x /F /27~(1 / r )  fo ~ dk  (k 2 - q2 + iF/2)  1 e x p [ i ( k r -  k2t)] 

x { 1 - exp [i(k 2 - q2 + iF /2 ) t ]  } (5.3) 

where r =  I~L. 
It can be rewritten in a way exhibiting the time of decay t' as 

~b({, t) = - i(2~r)-l(/'/27z)l/2 dk exp( ikr )  dt' 

x exp[ - ik2(t - t ')  - iq2t ' - F t ' /2]  (5.4) 

When the unstable particle decays, the center of mass becomes free 
and a 2 has to be replaced by a2+ i ( t - t ' ) / 2  to account for wave-packet 
spreading. However, the calculations can be slightly simplified if one con- 
siders a to be large enough so that a2~> ( t - t ' ) .  Note that this inequality is 
compatible with a large lifetime because it is not assumed that a2>> t. 

As shown by Golberger and Watson, if one denotes by H the total 
Hamiltonian including the decay Hamiltonian, the component of the wave 
function e x p ( - i H t ) [ q / )  in the P - P '  channel is then simply given by 
~(x) ~(~, O. 

It will be convenient to evaluate the wave function in the semiclassical 
approximation. To do so, one notices that the exponents in'  Eq. (5.4) 
contain in fact the Planck constant in the denominator. One can therefore 
evaluate first the integral over k by the stationary phase method. The 
stationary point corresponds to a value ko of k given by 

r = 2ko(t - t') (5.5) 

the stationary value of the exponent being given by 

ko r - k~( t - t ')  = r2/4( t - t' ) 

The integration over k gives rise to a factor [ 8 r c i ( t - t ' ) ]  -1/2. The 
integration over t' can again be performed by the saddle-point method for 
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the same reason. Neglecting the overall factors behaving as a power of 
( t -  t ' )  for reasons to be checked later on, one finds the saddle point to be 
given at a value t; for t' such that 

r 2 = 4(q 2 - i F / 2 ) ( t  - t ' )  2 (5.6) 

The small imaginary part resulting for t; implies a slight displacement of 
the integration contour in the complex plane. The stationary value of the 
phase is then given by 

r 2 / 4 ( t -  t'o) --  (q2 _ iF/2)t 'o  = qr -- q2t + i ( F / 2 ) ( t -  r /2q)  

The integration over t' gives a factor [ 8 ~ i q 2 / ( t - t ' o ) ]  -1/2, so that 
finally the wave function reads, up to an overall constant factor, 

O ( X ,  ~, t) = q~ (X) r  -~ e x p [ i ( q r  - q2t)  - ( F / 2 ) ( t  --  r / 2q ) ]  (5.7) 

The saddle-point approximation is correct if the stationary points are 
within the domain of integration, i.e., if 

t - r /2v > 0 (5.8) 

expressing the fact that the decay happened at a positive time t; and that 
the semiclassical travel of the particles occurred at velocity v. 

Finally, it can be checked that the neglected factors containing powers 
of ( t -  t') could be omitted if the confinement radius a is large enough so 
that 

a 2 >> r2B (5.9) 

where 2B = q-~ is the Broglie wavelength. 

5.2. Global  Spat ia l  Analysis  of  the  EPR Exper iment  

Let V be a small volume around a point Xo where particle P is 
detected at time t. Let E ( t )  denotes the predicate 

E ( t )  = "at time t, particle P is in V" 

Let us now consider a sphere V' with a radius R to be made precise 
later on, centered at the symmetric point - x 0 .  Define the predicate 

E ' ( t )  = "At time t, particle P' is in V'" 

I now find under what conditions one has 

E(t) ~ E'( t)  (5.10) 
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As was explained in I, one expects only to prove (5.10) up to negligible 
error. 

Recall the strategy: One has to define a set X, a family of events B by 
giving its basis, to check the compatibility conditions, and finally to check 
that the conditional probability P(E'*[E) is very small. 

Since one is dealing with particle positions, the spectra are respectively 
R 3 and R 3, so that X =  R 6. As a basis of B, I take the following family: 

( E x  E') ,  (E* x E') ,  ( E x  E'*) ,  (E* x E '*)  (5.11) 

The compatibility conditions are trivial because all these projectors 
commute. The probabilities are all of the form 

Tr(pFF') 

where p is the density operator I~,~(,=o))(~PAt=O)l and F represents 
either E(t) or E*(t), F' representing E'(t) or E'*(t). Since the volume V is 
very small, one has 

w(E) = Tr[pE(t) ] = V [ dx' 10(x, x', 012 
JR 3 

w(E~E')=Tr[pE(t)E'( t ' )]  = V f  dx' kO(x,x', t)l z 
V' 

w(E~E'*)=Tr[pE(t)E'*( t )]= V f  dx' Itp(x,x', t)l 2 
lz '*  

Assuming condition (5.8) to be satisfied, one can insert the wave function 
(5.7) into these integrals. It is the found immediately that the conditional 
probability w(E'* [ E( = w(E ~ E'* )/w(E) is of the order of exp( - R2/2a 2), 
which may be taken as small as one wants by choosing R/a large enough. 
Thus one has obtained E(t)=~E'(t) u.t.n.e. The same result can be 
obtained using the wave function in the more precise forms (5.4) or (5.5). 
When wave-packet spreading is not negligible, the condition to be satisfied 
becomes R 4 >~ a 4 + x~2~/4. 

5.3. The History of Particles 

Let us now see how the logical reformulation of the interpretation of 
quantum mechanics can be used to assert what happened to a system at a 
time and at a place differing from the time and place where the 
measurement was performed. This is a typical example of violation of the 
"no trespassing" rules of the Copenhagen version. It is also an example 
showing how Gritliths' "consistent histories" can be substantiated. 

It will not be convenient to work in three-dimensional space because 
this would lead to unnecessary mathematical complexity, so I shall assume 
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here that the experiment takes place in a one-dimensional space. The 
calculations have also been done in three-dimensional space, but they turn 
out to be cumbersome and do not teach anything new. 

Let us consider: (i) A very small space interval -/2 centered at a point 
x20 far from the origin. (ii) An interval J~ centered at the symmetric point 
-X2o having a half-width R2. Assume that the condition R~ ~> a 2 is satisfied 
(a being, as above, the initial wave packet width). (iii) An interval J~ 
centered at a point xlo located between the origin and X2o, with a half- 
width R1 to be restricted later. (iv) An interval J'~ with half-width R'I 

centered at - x l o  (see Fig. 3). Consider a time t2 satisfying the condition 
(5.8), i.e., t 2>X2o /2V ,  and a time t~ such that t 2 - t l  is the classical time 
spent by the particle when going from X~o to X2o, i.e., 

t2 - t l  = (X2o - Xlo)/V (5.12) 

Define the predicates 

E~ = "At time t~, P is in Jl" 

E'I = "At time h ,  P'  is in J ' i"  

E2 = "At time t2, P is in J2" 

E ;  = "At time t2, P '  is in J ; "  

J i  ....... 

t̂ 1 I -- 

J2  

' t 2 ~  t 

..J'2 

Fig. 3. The two-dimensional space-time regions used in the theory of histories and the 
discussion of causality. 
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The corresponding space X is R4;  the smallest family of events B has 
for basis the following sets 

D1 =J1 xJ ' l  X J 2  x J 2 ,  

D 3 =J~'  xJ~ • x J2, 

Ds= R x R x J * '  x J2, 

D 2 = J  1 x Jr* x J ~ x J  2 

D 4 = J* x J * '  x J~x J 2  

D 6 = R x R x R x J  ~' 

(5.13) 

The corresponding compatibility conditions are 

C1 ReTr(E1 ' * ' ' = ElpE1E1E2E2)  =0  

C2 = Re Tr (EIE ;*  pE*E;*E'2E2) = 0 

C3 = Re Tr(E~ E'lpEI E;* E'2E2) = 0 

C 4 = Re Tr(EI*E', pE* E* 'EIE2)  = 0 

(5.14) 

The basic probabilities are w(Dj), where Dj = Jl:~ • J'lB • J27 :x: J26 and 
where Jl~, for instance, denotes either J l ,  J* ,  or the set of all real 
numbers R. 

One already knows that E ;  is a logical consequence of E2. One would 
like to find conditions under which E1 and E'I are also logical consequen- 
ces of E2, so that one might assert u.t.n.e, that these predicates describe a 
small part of the system history. 

Writing, for instance, 

E I = f j  dxa IXl)(Xll,  
1 

El(tl) = U(tl) E, U-l(t~) 

with 

(x[ U ( t ) l y )  = ( - 2 n i t )  -1/2 exp[i(x - y)Z/2t] (5.15) 

one finds that the traces appearing in the compatibility conditions as well 
as the probabilities all take a similar form, namely that they are all propor- 
tional with a common factor to an integral such as 

f dxl dX'l dyl dy'~ dx'2 exp(i~) (5.16) 

These integrals only differ by their domains of integration. For instance, in 
order to write the first consistency condition (5.14), one must integrate xl 

t I t t / over J1, xl over Ja,  Yl over R - - J  1 = J * ,  y] over J1, and x2 over J2. 
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The exponent ~b is given by 

iqb = i(x2o - x l  )2/2(t2 - t l  ) --I-- i ( x l  - x l ) 2 / 2 ( t 2  - tl ) - i(x2o - Yl  )2/2(t2 - t l) 

- i(x'2 - y ' l ) z / z ( t2  - t l )  + iQ ]x~ - x'll - iQ l y l  - y'll 

- { [-(Xl + x'1) /Z]Z/4a 2 } - { [(y~ + y'~)/Z]Z/4a 2 } (5.17) 

where I have used the one-dimensional version of the wave function (5.7) 
and where Q = q - iF/4q.  

Before entering the calculation, let us first guess what the results 
should be. It was noticed in I that integrals like (5.16) were essentially the 
result of a Feynman path integral with a path starting from time zero, 
going to (x2, t2) and back, but restricted to specific "windows" at some 
intermediate times. One expects therefore to obtain always the same final 
result for all the integrals when the windows such as (Jl, J1, J2, J1, J ~ l )  
are crossed by the classical path of the system. Conversely, when one or 
several windows are not crossed by the classical trajectory, the resulting 
integral should be a small and oscillating quantity, the oscillation 
depending upon the exact position for the boundary of the windows. One 
therefore has to choose the boundaries of the intervals so as to satisfy the 
compatibility conditions. 

Once again notice that the exponent ~, when written in ordinary 
units, contains a factor h in the denominator: xZ/2t ,  for instance, should 
read m x Z / 2 h t  and Qr  should read Qr/h.  

I shall evaluate the integrals by the saddle-point method. Sometimes, it 
may look as if I am going to evaluate some of these integrals, when they 
are very small, by using the saddle-point method out of its range of 
validity, namely by evaluating the exponent by its second-order Taylor 
expansion far from the saddle point. This can be justified by taking 
explicitly into account the fact that the exponent is a second-order 
polynomial. Things are a bit complicated because of the absolute values 
appearing in them and I shall not give the necessary detailed analysis. 

I make a Taylor expansion of ~b up to second order around its saddle 
point. The saddle point is the point where all the derivatives ~q~/~x~, 
Oq~/~x'l, & b / @ l ,  ~q~/~Y'l vanish. This gives for its coordinates (x~, x'ls, 
y , , ,  y'~,) the values 

xl~ = xl0 - [2 + 16a2/i( t2 --  tl)] l(x; + X2o) 
(5.18) 

X'ls = X~s + I-1 + i ( t 2 -  t l ) / 8 a  2 ] -1(x'2 + X20 ) 

Y~s and Y'ls are given by similar expressions where i is to be replaced by - i. 

822/53/3-4-26 
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Since the spreading of the wave packet is negligible, when x; is near the 
center -x20 of J~, this gives approximately 

Xls ~' Yl~ "~ -x'ls ~ -Y'ls ~ Xlo (5.19) 

The stationary value of the exponent is equal to zero. In order to 
express the second-order terms, I define the variations 

~ = x l - - X l s ,  ~'=X'a--X'l,, 11= 1--Yls,  tl '=Y'x--Y'ls 

This gives for the Taylor expansion of q~ to second order: 

i~ = - [(~ + ~')2/16a 2 ] - [ ( t /+ r/')2/16a 2 ] 

+ i(r + ~ t 2  _ ~]2 _ ~/,2)[2(t2 _ tl)]  -1 (5.20) 

When r is integrated from - o o  to + o% the resulting factor in 
becomes 

i~(~) = ~2{i[2(t2- tl)] -1 _ (16a2)-1 } (5.21) 

up to terms of higher order in ( t2 - t l ) /16a  2. Consider then the integral 

91 I(R1) = exp[iq~(~)] d~ 
R l  

Using the known asymptotic behavior of the error function, this is 
given, when R~ is much larger than ( t2 - t l ) /16a  2, by 

I(R1) ~ x/~z Re{(/? - ie) 1/2 _ z~-~/2[(/? _ ie)R~] -~ exp[(ie - / ? )R~]  } (5.22) 

where/? = 1/16a 2 and ~ = [2(t 2 - tl) ] -l. 
With these notations, the four consistency conditions (5.14) become 

C 1 = Re{ II(i)[ 2I(R~)[I(oo) - / ( R 1 ) ]  } 
C2= Re{ ll(oo )-- l (Ri)12I(R1)EI(oo)-  I(R~) ] } 

(5.23) 
C 3 = Re{ II(R1)I 2I(R'l)EI(oo ) - I(R'~) ] } 

C4= Re{ I I (oo) - I (Rt ) [2I (R ' l )EI(oo)- I (R ' l ) ]}  

Choosing R1 and R'I to be large compared to [h/m(t 2 - t l)]  1/2 and a, 
one has essentially I(R~)= I(oo), i.e., a finite constant, whereas Eq. (5.22) 
shows that I (oo ) - I (R1)  is an exponentially small quantity oscillating with 
a wavelength of the order of [h /m( t2 - t l ) ] /R1  when R1 changes from a 
given value R~ to a neighboring one R1 +AR~. Accordingly, one can 
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choose the size of the intervals J~ and J'l so that ' the consistency conditions 
are exactly satisfied. 

The fact that the size of the intervals has to be chosen in such a precise 
way may be somewhat surprising. It was shown in I how this may be 
avoided by relaxing the axioms of probability theory. In the third paper of 
this series, it will also be shown how a more careful consideration of the 
meaning oi" projectors may clarify this point. 

Introducing the small quantities 

e(R,) = [I(oo ) - I(Rt)  ]/I(oo ) ~ [h/m(t2 - t 113 ~/2/R1 

and e(R{) given by a similar expression, one can finally get the relevant 
probabilities. The integration of x;  over the interval J~ having the same 
half-width R~ as the sphere V' in Section 6 only gives a constant factor 
2R;. Including all the constant factors in P(E2), one gets 

w(E,, E;, E'~, E~) = w(E~) 

w(E*, E'~, E'2, E2) = w(E2) e2(R,) (5.24) 

w(E,, E;*, E'~, E2) = w(E2) ~2(R'l) 

According to the rules of implication given in I, it can be concluded 
that E2 ~ E ;  and E] ~ E~, u.t.n.e. There is no apparent difficulty, except 
for the heavier character of the calculations, to extend this result to many 
more predicates and therefore to logically derive a number of statements 
concerning the history of the system. 

5.4.  C a u s a l i t y  

The EPR experiment can be considered from another standpoint. 
Observation tells us that particle P is in the interval J2 at time t2. Then, 
knowing that the dynamics obeys relativistic constraints, one can draw 
logical consequences of this event toward the past and toward the future. 
Let us now reconsider the above logical connection of several events in this 
new light. 

The preceding analysis can be slightly extended in such a way that the 
family of events describing, at least partially, the history of the system 
consists of causally connected events, i.e., of timelike-separated events. 

To obtain this result, it is enough to replace the time t, at which the 
position of particle P' was asserted by the predicate E '  1 by a slightly later 
time t]. One can thus realize a situation where the three pairs of events 
(E2, E l )  , (E~,E'I), and (E'~,E'2) are all made up of timelike-separated 
events. It is enough for that to take X~o much smaller than X2o and the 



952 Omn~s 

space-time set (J] ,  t'l) to be within the intersection of the light cones 
originating from the points of the set (J~, t~). 

One can push the center X~o of the interval J1 as near to the origin as 
one can, but not nearer than a distance remaining large compared to 
[h/m(t 2 -  t~)] 1/2, and do the same for J'l. The timelike separation will then 
be realized if one takes 

t'~ - t~ >> 2(Ix2ot 2%)~/2/c 

The calculations showing consistency and implication will be prac- 
tically, unchanged if the difference t' 1 - t~ remains very small compared to 
t 2 - t l ,  i.e., practically [X2ol/V. Both conditions can be realized together if 
one has 

v/c ~. (Ix2ol/2B) ~/2 

an inequality easy to satisfy. 
It is then possible to organize a chain of implications that is nowhere 

in conflict with the relativistic finite velocity of signals, namely: "Observing 
P in J2 at time t2" ~ "P was already in J1 at time t l"  ~ "The other particle 
P'  was in J'l at time t'~"=~ "P' is in J~ at time t2." In fact, this is just the 
kind of reasoning that one makes "naively" when discussing the EPR 
experiment in ordinary terms. 

The theory that has been given here could in principle be made 
relativistic but already in the present approximate treatment of the 
relativistic relations of events, it can be seen that the logical analysis cannot 
meet contradiction with the fact that signals have a finite velocity. 

6. W H A T  A POSIT ION M E A S U R E M E N T  TELLS US 
A B O U T  M O M E N T U M  

I now consider a very common experiment that clearly shows how the 
logical interpretation of quantum mechanics differs from the Copenhagen 
formulation. It was already stressed that many statements that were strictly 
forbidden in the Copenhagen version become meaningful in the present 
one. 

A typical example is the following. Suppose a particle is produced at 
the origin of space at time zero and that it is observed at a point x at time 
t. An intuitive naive statement would be to say that the velocity of the 
particle at any time before the measurement was x/t. This is said to have 
absolutely no meaning in the Copenhagen interpretation. I now show that 
it is nevertheless a reliable statement as defined in I. 
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I consider the case where the wave function at time zero is a Gaussian 
with uncertainty a in the position. Denoting the position by y, the wave 
function is therefore 

O(y) = (2~a 2) 1/4 e x p [ - ( y 2 / g a 2 ) ]  (6.1) 

Let us define the following predicates: 

E2 = "The particle is in an infinitely small volume A V around point x at 
time t" 

El = "The momentum of the particle is in a box B centered at the point Po 

= mx/t at any time tl between zero and t" 

The smallest representation of logic containing these predicates has the 
basis {(El, E2), (E~, E2), (I1, E*)}. Choose a small number e defining 
what we mean by a negligible error. In order to formalize the naive 
argument, one has to find whether this representation of logic is consistent 
and whether one has E~ ~ E~ up to negligible error of order e. 

We need the error function 

q~(u) = (2/x/~)  e x p ( - s  2) ds (6.2) 

as well as its asymptotic behavior for large arguments 

qS(u) ~ 1 -- (rcu) -I exp(--u 2) (u>> 1) (6.3) 

There is only one consistency condition, namely 

Re[Tr(E~pE*E2) ] = 0 (6.4) 

Introducing the wave function at time t in momentum space 

~P(p, t) = (2a2/~zh2) 1/4 exp[ - (p2a2/h 2) - i(pZt/2mh)] (6.5) 

the consistency condition reads 

Re{fRdpfB dp'gl(p,t)~U*(p', t)exp[i(p'-p)x/h]}=O (6.6) 

and the probability of (El,  E2) is 

w(E~, E2) = w(E2) f dp f dp' ~P(p, t) ~g*(p', t) e x p [ i ( p ' -  p)x/h] (6.7) 
JB JB 
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Take the box B to be a circular cylinder with axis along the direction 
of the point x with radius Ap and length 23p. All the calculations are 
straightforward: the results of the integrations can be expressed as com- 
binations of exponentials and error functions. In the interesting cases, the 
error functions can be approximated by their asymptotic expansion. 

Introduce a time v = (2MaZ/h) m that is essentially the time necessary 
for a significant spreading of the initial wave packet. I consider the case 
where the time of observation t is large compared with r. Moreover, I take 

Ap >> (m Ix] z/t 2) (6.8) 

I say, as in paper I, that E 2 ~ E1 up to error e iff the conditional 
probability P(E~[E2) is smaller than a fixed small number ~. 

The consistency condition becomes in these conditions 

R e { e x p [ ( -  Ap2(~ + i t ) /mh)-  ire~4] } = 0 (6.9) 

and the order of magnitude of the conditional probability is 

P(EI I E2) = O[(t3pZ/rnh) -1/2 exp( - a  2 ApZ/h2)] (6.10) 

This last quantity is identified to the allowed error e. It is seen that the 
error Ap thus defined is controlled by the Heisenberg uncertainty relation 
associated with the initial wave function. It expresses how uncertain is the 
naive statement expressing that the particle was initially at the origin of 
space. 

In order to have Po ~> Ap together with the condition (6.8), one must 
take x large enough so that 

Ix[ ~> (ht/ma)Ilog el (6.11) 

i.e., the observation of the particle should have for its cause the occurrence 
of a large initial momentum and not just the spreading of the wave packet. 
Finally, it is easy to choose p in a precise way in order to satisfy the con- 
sistency condition, obtaining E2 =~ E1 up to negligible error of order e. 

It should be noticed that the intermediate values of the momentum are 
known with a high confidence that depends only upon the initial state and 
not on the accuracy of the position measurement. In fact, I have assumed 
the position measurement to be made with a very small uncertainty and 
find that the intermediate momentum is known with a confidence that is 
not limited by the Heisenberg uncertainty relation in the final 
measurement. 

An analogous calculation can be done for an initial wave function 
r -1 exp(ikr-r/a),  using saddle-point evaluations. The results are similar, 
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but, when the position and time of the measurement are in the ratio [xJ/t of 
the order of hk/m, the reason for the observation can be assigned to the 
initial average value hk of the momentum and not to momenta having a 
small probability. This leads to a positive answer to a long-standing 
problem: when we observe a particle generated in an S wave, we can tell 
that the particle had its momentum directed toward the observation point 
some time before the measurement. The calculation can also be done for a 
particle produced in a decay, using the wave function given by Goldberger 
and Watson. 

Here is a result that should obviously be investigated in full detail 
because it brings something somewhat new in quantum mechanics. It has 
some of the features that are necessary to satisfy the criteria put forward by 
Einstein et al. (3) as the conditions of "a complete description of physical 
reality" by quantum mechanics. It will be reconsidered in a later 
publication both in the EPR framework and for its own physical meaning. 
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